<!DOCTYPE html><html lang="en"><head><meta http-equiv="Content-Type" content="text/html charset=UTF-8"><meta charset="UTF-8"><meta name="viewport" content="width=device-width"><meta name="x-apple-disable-message-reformatting"><title>TLDR Data</title><meta name="color-scheme" content="light dark"><meta name="supported-color-schemes" content="light dark"><style type="text/css"> :root { color-scheme: light dark; supported-color-schemes: light dark; } *, *:after, *:before { -webkit-box-sizing: border-box; -moz-box-sizing: border-box; box-sizing: border-box; } * { -ms-text-size-adjust: 100%; -webkit-text-size-adjust: 100%; } html, body, .document { width: 100% !important; height: 100% !important; margin: 0; padding: 0; } body { -webkit-font-smoothing: antialiased; -moz-osx-font-smoothing: grayscale; text-rendering: optimizeLegibility; } div[style*="margin: 16px 0"] { margin: 0 !important; } table, td { mso-table-lspace: 0pt; mso-table-rspace: 0pt; } table { border-spacing: 0; border-collapse: collapse; table-layout: fixed; margin: 0 auto; } img { -ms-interpolation-mode: bicubic; max-width: 100%; border: 0; } *[x-apple-data-detectors] { color: inherit !important; text-decoration: none !important; } .x-gmail-data-detectors, .x-gmail-data-detectors *, .aBn { border-bottom: 0 !important; cursor: default !important; } .btn { -webkit-transition: all 200ms ease; transition: all 200ms ease; } .btn:hover { background-color: #f67575; border-color: #f67575; } * { font-family: Arial, Helvetica, sans-serif; font-size: 18px; } @media screen and (max-width: 600px) { .container { width: 100%; margin: auto; } .stack { display: block!important; width: 100%!important; max-width: 100%!important; } .btn { display: block; width: 100%; text-align: center; } } body, p, td, tr, .body, table, h1, h2, h3, h4, h5, h6, div, span { background-color: #FEFEFE !important; color: #010101 !important; } @media (prefers-color-scheme: dark) { body, p, td, tr, .body, table, h1, h2, h3, h4, h5, h6, div, span { background-color: #27292D !important; color: #FEFEFE !important; } } a { color: inherit !important; text-decoration: underline !important; } </style><!--[if mso | ie]> <style type="text/css"> a { background-color: #FEFEFE !important; color: #010101 !important; } @media (prefers-color-scheme: dark) { a { background-color: #27292D !important; color: #FEFEFE !important; } } </style> <![endif]--></head><body class=""> <div style="display: none; max-height: 0px; overflow: hidden;">Multiple DuckDB npm packages were compromised with malicious updates designed to drain crypto wallets. The attack reused a known payload β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β </div> <div style="display: none; max-height: 0px; overflow: hidden;"> <br> </div> <table align="center" class="document"><tbody><tr><td valign="top"> <table align="center" border="0" cellpadding="0" cellspacing="0" class="container" width="600"><tbody><tr class="inner-body"><td> <table align="center" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr class="header"><td bgcolor="" class="container"> <table width="100%"><tbody><tr><td class="container"> <table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" style="margin-top: 0px;" width="100%"><tbody><tr><td style="padding: 0px;"> <table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;"> <div style="text-align: center;"> <span style="margin-right: 0px;"><a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Ftldr.tech%2Fdata%3Futm_source=tldrdata/1/01000199383d38ca-ee16ad86-6e4a-4346-b960-4ff4048b2bc6-000000/z8FFcMwcw-ahR4fnoFA4vbpoqDIRCapUS9RB2PQ39Ac=422" rel="noopener noreferrer" target="_blank"><span>Sign Up</span></a> |<span style="margin-right: 2px; margin-left: 2px;"><a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fadvertise.tldr.tech%3Futm_source=tldrdata%26utm_medium=newsletter%26utm_campaign=advertisetopnav/1/01000199383d38ca-ee16ad86-6e4a-4346-b960-4ff4048b2bc6-000000/yy2j1nyCrMdOckKyj3dC_mgax4amyTlDCk1stU-JSK0=422" rel="noopener noreferrer" target="_blank"><span>Advertise</span></a></span>|<span style="margin-left: 2px;"><a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fa.tldrnewsletter.com%2Fweb-version%3Fep=1%26lc=1670a604-84b7-11f0-bcf5-55fc1d40139c%26p=2c6a09f4-8ec7-11f0-8803-c5df502b2a99%26pt=campaign%26t=1757585160%26s=4f9d77a1861813fac5c095b9d403a0c6319229e2a7fa87d56a87ad57b6f230a0/1/01000199383d38ca-ee16ad86-6e4a-4346-b960-4ff4048b2bc6-000000/HBXdqas6OCPRMy6UvjfavB5hFcy47FA1V578NFNgpHM=422"><span>View Online</span></a></span> <br> </span></div> </td></tr></tbody></table> <table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="text-align: center;"><span data-darkreader-inline-color="" style="--darkreader-inline-color:#3db3ff; color: rgb(51, 175, 255) !important; font-size: 30px;">T</span><span style="font-size: 30px;"><span data-darkreader-inline-color="" style="color: rgb(232, 192, 96) !important; --darkreader-inline-color:#e8c163; font-size:30px;">L</span><span data-darkreader-inline-color="" style="color: rgb(101, 195, 173) !important; --darkreader-inline-color:#6ec7b2; font-size:30px;">D</span></span><span data-darkreader-inline-color="" style="--darkreader-inline-color:#dd6e6e; color: rgb(220, 107, 107) !important; font-size: 30px;">R</span> <br> </td></tr></tbody></table> <br> <table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr id="together-with"><td align="center" height="20" style="vertical-align:middle !important;" valign="middle" width="100%"><strong style="vertical-align:middle !important; height: 100%;">Together With </strong> <a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fwww.onetrust.com%2Fresources%2Ftldr-csyn%2Foperationalizing-first-party-data-in-advertising-ebook%2F/1/01000199383d38ca-ee16ad86-6e4a-4346-b960-4ff4048b2bc6-000000/fysNG2Ow-VsX9Lffe6XCJ14mOgDxhOP8walstyuWDZw=422"><img src="https://images.tldr.tech/onetrust.png" valign="middle" style="vertical-align: middle !important; height: 100%;" alt="OneTrust"></a></td></tr></tbody></table> <table style="table-layout: fixed; width:100%;" width="100%"><tbody><tr><td style="padding:0;border-collapse:collapse;border-spacing:0;margin:0;"> <div style="text-align: center;"> <h1><strong>TLDR Data <span id="date">2025-09-11</span></strong></h1> </div> </td></tr></tbody></table> <table style="table-layout: fixed; width:100%;" width="100%"><tbody><tr id="sponsy-copy"><td class="container" style="padding: 15px 15px;"> <div class="text-block"> <span> <a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fwww.onetrust.com%2Fresources%2Ftldr-csyn%2Foperationalizing-first-party-data-in-advertising-ebook%2F/2/01000199383d38ca-ee16ad86-6e4a-4346-b960-4ff4048b2bc6-000000/KJf4t5iydMop2BUCrb2jGqXuGXY33Ikwi6vS0E7WWiQ=422"> <span> <strong>Operationalizing first-party data (Sponsor)</strong> </span> </a> <br> <br> <span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;"> Not all data is created equal. For advertisers, first-party data is often the most valuable asset - as it's accurate, reliable, and comes without privacy or compliance concerns.<p></p><p>Download this <a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fwww.onetrust.com%2Fresources%2Ftldr-csyn%2Foperationalizing-first-party-data-in-advertising-ebook%2F/3/01000199383d38ca-ee16ad86-6e4a-4346-b960-4ff4048b2bc6-000000/-rpaU3p0rHx3fVhXgV0m6JZ1OqofAhoER4FbkROiX7I=422" rel="noopener noreferrer nofollow" target="_blank"><span>guide by OneTrust</span></a> to learn:</p> <ul> <li>How to activate first party data by unifying customer profiles</li> <li>Using data to power privacy-first advertising campaigns</li> <li>Delivering better targeting and richer personalization</li> </ul> <p><a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fwww.onetrust.com%2Fresources%2Ftldr-csyn%2Foperationalizing-first-party-data-in-advertising-ebook%2F/4/01000199383d38ca-ee16ad86-6e4a-4346-b960-4ff4048b2bc6-000000/PX_-eb-DskxOBrT18gB2AhtIB8xA99fxsvaj9hHw92E=422" rel="noopener noreferrer nofollow" target="_blank"><span>Get your copy here π₯</span></a> </p> </span></span></div> </td></tr></tbody></table> </td></tr></tbody></table> </td></tr></tbody></table> </td></tr> <tr bgcolor=""><td class="container"> <table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td style="padding: 0px;"> <table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding-top: 0px; padding-bottom: 0px;"> <div class="text-block"> <div style="text-align: center;"><span style="font-size: 36px;">π±</span></div></div> </td></tr></tbody></table> <table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding-top: 0px; padding-bottom: 0px;"> <div class="text-block"> <div style="text-align: center;"> <h1><strong>Deep Dives</strong></h1> </div> </div> </td></tr></tbody></table> <table style="table-layout: fixed; width: 100%;" width="100%"><tbody><tr><td style="padding:0;border-collapse:collapse;border-spacing:0;margin:0;" valign="top"> <table align="center" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;"> <div class="text-block"> <span> <a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fsmallbigdata.substack.com%2Fp%2Fpast-years-data-engineering-and-current%3Futm_source=tldrdata/1/01000199383d38ca-ee16ad86-6e4a-4346-b960-4ff4048b2bc6-000000/P77aykLo7fDU3CMkZWNdHWqU2ozJWdwCDwtrqWT-Ar8=422"> <span> <strong>Past Year's Data Engineering and Current Trends (2025 edition) (7 minute read)</strong> </span> </a> <br> <br> <span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;"> Key trends in modern data engineering include memory-first analytical caching (e.g., DuckDB, Druid, and BigQuery BI Engine) for sub-second dashboard performance and cost savings, democratization of Semantic Layers (e.g., dbt Semantic Layer, Cube, and Looker) to enforce metric consistency and prevent analytic drift, and portable query optimization frameworks (e.g., Calcite, Substrait, and DataFusion) that decouple business logic from execution. AI-powered interfaces and automation enhance self-serve analytics, data quality, and documentation. While the last decade featured a fragmentation of the stack into a myriad of tools, the momentum has shifted back to platform consolidation. </span> </span> </div> </td></tr></tbody></table> <table align="center" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;"> <div class="text-block"> <span> <a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fclickhouse.com%2Fblog%2Ftimescale-to-clickhouse-clickpipe-cdc%3Futm_source=tldrdata/1/01000199383d38ca-ee16ad86-6e4a-4346-b960-4ff4048b2bc6-000000/7Xk1-t0hkO4n71bcP2OAMlRMXjD9x8GLUrv09WO78c0=422"> <span> <strong>TimescaleDB to ClickHouse Replication: Use Cases, Features, and How We Built It (6 minute read)</strong> </span> </a> <br> <br> <span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;"> The ClickPipes Postgres CDC connector, powered by PeerDB, enables efficient replication from TimescaleDB to ClickHouse Cloud, supporting fast parallel loads, schema changes, and comprehensive monitoring for both compressed and uncompressed hypertables. It overcomes challenges like chunk-level replication and compression by using automated parent lookups and a CTID-agnostic fallback for reliable data transfer. </span> </span> </div> </td></tr></tbody></table> <table align="center" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;"> <div class="text-block"> <span> <a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fdebezium.io%2Fblog%2F2025%2F09%2F08%2Fsqlserver-tx-log%2F%3Futm_source=tldrdata/1/01000199383d38ca-ee16ad86-6e4a-4346-b960-4ff4048b2bc6-000000/23TaBNYZ0DZOuRwLq_Jkz97mbPVxZsfeAQbbGUd8yN0=422"> <span> <strong>Peeking Inside the SQL Server Transaction Log (9 minute read)</strong> </span> </a> <br> <br> <span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;"> SQL Server's change data capture currently relies on system change tables populated by the SQL Server Agent, which Debezium polls at configurable intervals to stream CDC events. Direct parsing of the SQL Server transaction logβmirroring Oracle CDC approachesβcould reduce latency and increase efficiency. This article details the physical storage architecture of transaction logs (virtual log files, blocks, and LSNs), data files, partitions, and data pages, with practical walkthroughs for low-level analysis using system views and DBCC utilities. </span> </span> </div> </td></tr></tbody></table> </td></tr></tbody></table> <table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding-top: 0px; padding-bottom: 0px;"> <div class="text-block"> <div style="text-align: center;"><span style="font-size: 36px;">π</span></div> </div> </td></tr></tbody></table> <table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding-top: 0px; padding-bottom: 0px;"> <div class="text-block"> <div style="text-align: center;"> <h1><strong>Opinions & Advice</strong></h1> </div> </div> </td></tr></tbody></table> <table style="table-layout: fixed; width: 100%;" width="100%"><tbody><tr><td style="padding:0;border-collapse:collapse;border-spacing:0;margin:0;" valign="top"> <table align="center" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;"> <div class="text-block"> <span> <a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fwww.confessionsofadataguy.com%2Fis-data-modeling-dead%2F%3Futm_source=tldrdata/1/01000199383d38ca-ee16ad86-6e4a-4346-b960-4ff4048b2bc6-000000/LseACzxt-M0D8eVyabKCxSnZpRNaBh4MZYKA0IeyGlc=422"> <span> <strong>Is Data Modeling Dead? (4 minute read)</strong> </span> </a> <br> <br> <span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;"> The rise of big data, NoSQL databases, and cloud-native solutions has shifted focus from data modeling. Flexible schemas in NoSQL and tools like Spark or Hadoop prioritize scalability over rigid structures. However, data modeling remains valuable for specific use cases, particularly where data governance, compliance, or analytics are priorities. </span> </span> </div> </td></tr></tbody></table> <table align="center" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;"> <div class="text-block"> <span> <a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fdatastackshow.com%2Fpodcast%2Fwill-ai-permanently-disrupt-the-bundling-and-unbundling-cycle%2F%3Futm_source=tldrdata/1/01000199383d38ca-ee16ad86-6e4a-4346-b960-4ff4048b2bc6-000000/VblapyjfWLK5iYbh4GwaWI1rAfKNZIX8TSk-9yUWgxo=422"> <span> <strong>Will AI Permanently Disrupt the Bundling and Unbundling Cycle? (34 minute podcast)</strong> </span> </a> <br> <br> <span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;"> The data industry naturally cycles through bundling and unbundling, with major moves like Fivetran's acquisitions pushing toward bundled solutions. Despite optimism for AI to create streamlined solutions, unbundling remains highly probable, as AI often delivers functional but less efficient outcomes and larger organizations slow down in aligning complex product goals with enterprise customer priorities. </span> </span> </div> </td></tr></tbody></table> <table align="center" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;"> <div class="text-block"> <span> <a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Flinks.tldrnewsletter.com%2Fw9X9wr/1/01000199383d38ca-ee16ad86-6e4a-4346-b960-4ff4048b2bc6-000000/zmPalMw9CQHSuDPnrRCTCKqs61ZW0MwZSBN695Ed9kE=422"> <span> <strong>SCD2 Deep Dive with dlt: How Nested Data Affects Queries and Costs (5 minute read)</strong> </span> </a> <br> <br> <span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;"> Nested SCD2 is hard to manage with JSON, but the dlt library automates it by flattening data, tracking validity (valid_from/valid_to), and generating SQL across root and nested tables. Key tips: let dlt handle versioning, use incremental loads to cut query cost by 25β35%, and note that nesting depth only modestly affects performance. Focus on schema design and extraction strategy rather than flattening depth to keep pipelines simple and efficient. </span> </span> </div> </td></tr></tbody></table> </td></tr></tbody></table> <table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding-top: 0px; padding-bottom: 0px;"> <div class="text-block"> <div style="text-align: center;"><span style="font-size: 36px;">π»</span></div> </div> </td></tr></tbody></table> <table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding-top: 0px; padding-bottom: 0px;"> <div class="text-block"> <div style="text-align: center;"> <h1><strong>Launches & Tools</strong></h1> </div> </div> </td></tr></tbody></table> <table style="table-layout: fixed; width: 100%;" width="100%"><tbody><tr><td style="padding:0;border-collapse:collapse;border-spacing:0;margin:0;" valign="top"> <table align="center" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;"> <div class="text-block"> <span> <a href="http://tracking.tldrnewsletter.com/CL0/http:%2F%2Fbit.ly%2F44s7T94%3Ftrk=a8fcd5db-55ce-4627-8ed0-3286d3138e8c%26sc_channel=el%26utm_source=tldrdata/1/01000199383d38ca-ee16ad86-6e4a-4346-b960-4ff4048b2bc6-000000/96PEDq_wdAw7IAdam5pBnkkXlrTt9XilDglxwgMJV8A=422"> <span> <strong>Unify Analytics & AI: Free Builder Workshops (Sponsor)</strong> </span> </a> <br> <br> <span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;"> Learn to build AI-ready data foundations, integrate ML workflows, and implement architectural patterns for unified operations. Perfect for data teams looking to drive smarter decision-making through unified data and AI workflows. No vendor pitches - just practical insights for data leaders and practitioners. <p></p><p><a href="http://tracking.tldrnewsletter.com/CL0/http:%2F%2Fbit.ly%2F44s7T94%3Ftrk=a8fcd5db-55ce-4627-8ed0-3286d3138e8c%26sc_channel=el/1/01000199383d38ca-ee16ad86-6e4a-4346-b960-4ff4048b2bc6-000000/XqqKRNDS_qmhZ9kwGOHY2FmYdeeondhLSXEEEr1v-pg=422" rel="noopener noreferrer nofollow" target="_blank"><span><strong>Save your spot today</strong></span></a> </p> </span></span></div> </td></tr></tbody></table> <table align="center" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;"> <div class="text-block"> <span> <a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fwww.aikido.dev%2Fblog%2Fduckdb-npm-packages-compromised%3Futm_source=tldrdata/1/01000199383d38ca-ee16ad86-6e4a-4346-b960-4ff4048b2bc6-000000/MPXByVGCYsBD0WPWt3jM-n6xsHq2XOFo4sWqlsuX__0=422"> <span> <strong>DuckDB npm Packages Compromised (2 minute read)</strong> </span> </a> <br> <br> <span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;"> Multiple DuckDB npm packages were compromised with malicious updates designed to drain crypto wallets on September 9. The attack reused a known payload and oddly targeted backend libraries, and the vendor responded by deprecating the affected releases. </span> </span> </div> </td></tr></tbody></table> <table align="center" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;"> <div class="text-block"> <span> <a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fkestra.io%2Fblogs%2Frelease-1-0%3Futm_source=tldrdata/1/01000199383d38ca-ee16ad86-6e4a-4346-b960-4ff4048b2bc6-000000/6_Og6SazPBZ5R1V6_PZ-I1HMvvESoty8cw9nkaSUMbA=422"> <span> <strong>Kestra 1.0 β Declarative Orchestration with AI Agents and Copilot (17 minute read)</strong> </span> </a> <br> <br> <span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;"> Kestra 1.0 makes orchestration more powerful and easier to use, especially for data engineers. The AI Copilot turns natural language into YAML flows, and AI Agents can autonomously decide and loop tasks to meet goals. Key updates include AI-powered doc search, Git sync for full backups, plugin versioning, and unit tests to validate flows. Playground mode enables quick task-by-task prototyping, while flow-level SLAs improve reliability. New Helm charts simplify both testing and production deployments. Overall, Kestra 1.0 adds flexibility, automation, and better tooling for building and managing data pipelines. </span> </span> </div> </td></tr></tbody></table> <table align="center" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;"> <div class="text-block"> <span> <a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fgithub.com%2F514-labs%2FLLM-query-test%3Futm_source=tldrdata/1/01000199383d38ca-ee16ad86-6e4a-4346-b960-4ff4048b2bc6-000000/05s1E_U9NMdMu_-TPu_Bp0hJlz83whYPntysRsalGvA=422"> <span> <strong>LLM Query Performance Testing (GitHub Repo)</strong> </span> </a> <br> <br> <span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;"> LLM Query Performance Testing provides a benchmark that measures how database performance impacts LLM-style chat interactions, emphasizing user experience over raw speed. It compares ClickHouse and PostgreSQL across datasets from 10k to 10M rows, with tools for bulk testing, latency simulation, and performance visualization. </span> </span> </div> </td></tr></tbody></table> <table align="center" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;"> <div class="text-block"> <span> <a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fwww.cybertec-postgresql.com%2Fen%2Fcan-collations-be-used-over-citext%2F%3Futm_source=tldrdata/1/01000199383d38ca-ee16ad86-6e4a-4346-b960-4ff4048b2bc6-000000/oaRfC29czwRz_8m3d2pTdZHRlJmfKBtVg1cy4E_Yv9k=422"> <span> <strong>Can Collations Be Used Over citext? (6 minute read)</strong> </span> </a> <br> <br> <span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;"> Custom nondeterministic collations outperform citext by 2-4x for case-insensitive equality and range queries, offering better performance and simpler semantics, especially in sequential scans. However, for LIKE queries, citext remains preferable due to its support for indexed pattern matching, as collations lack index optimization in PostgreSQL 18 and earlier. </span> </span> </div> </td></tr></tbody></table> </td></tr></tbody></table> <table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding-top: 0px; padding-bottom: 0px;"> <div class="text-block"> <div style="text-align: center;"><span style="font-size: 36px;">π</span></div></div> </td></tr></tbody></table> <table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding-top: 0px; padding-bottom: 0px;"> <div class="text-block"> <div style="text-align: center;"><strong><h1>Miscellaneous</h1></strong></div> </div> </td></tr></tbody></table> <table bgcolor="" style="table-layout: fixed; width: 100%;" width="100%"><tbody><tr><td style="padding:0;border-collapse:collapse;border-spacing:0;margin:0;" valign="top"> <table align="center" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;"> <div class="text-block"> <span> <a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fduckdb.org%2F2025%2F09%2F08%2Fduckdb-on-the-framework-laptop-13.html%3Futm_source=tldrdata/1/01000199383d38ca-ee16ad86-6e4a-4346-b960-4ff4048b2bc6-000000/Trtv_AP-kowDpkzHXvK8AM9Bfs5D3LD4N9j65qWz-5A=422"> <span> <strong>Big Data on the Move: DuckDB on the Framework Laptop 13 (5 minute read)</strong> </span> </a> <br> <br> <span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;"> DuckDB demonstrates impressive performance on a Framework Laptop 13 with 128 GB RAM, achieving a loading speed of 20 GB of CSV files in just 10.2 seconds and processing TPC-H queries on a 3 TB dataset in 47.5 minutes. The laptop's capabilities highlight the potential of modern laptops for handling substantial analytical workloads, although thermal management remains a concern during intensive tasks. </span> </span> </div> </td></tr></tbody></table> <table align="center" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;"> <div class="text-block"> <span> <a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fmedium.com%2Ffresha-data-engineering%2Fthe-select-for-update-trap-everyone-falls-into-8643089f94c7%3Futm_source=tldrdata/1/01000199383d38ca-ee16ad86-6e4a-4346-b960-4ff4048b2bc6-000000/uMCgMtCSkWxz5hVpNpwBPwU9DcuhwfsdK9OFb63nlLM=422"> <span> <strong>The SELECT FOR UPDATE Trap Everyone Falls Into (7 minute read)</strong> </span> </a> <br> <br> <span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;"> Overusing SELECT FOR UPDATE in PostgreSQL can severely degrade concurrency, causing cascading locks, deadlocks, and performance bottlenecks, particularly when handling foreign key relationships and concurrent transactions. Empirical evidence shows switching to FOR NO KEY UPDATE eliminates 70% of lock wait times and triples throughput, provided rows are not being deleted or primary keys changed. Align lock levels with actual update intent to maximize transaction performance and system stability. </span> </span> </div> </td></tr></tbody></table> </td></tr></tbody></table> <table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding-top: 0px; padding-bottom: 0px;"> <div class="text-block"> <div style="text-align: center;"><span style="font-size: 36px;">β‘</span></div></div> </td></tr></tbody></table> <table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding-top: 0px; padding-bottom: 0px;"> <div class="text-block"> <div style="text-align: center;"> <h1><strong>Quick Links</strong></h1> </div> </div> </td></tr></tbody></table> <table bgcolor="" style="table-layout: fixed; width: 100%;" width="100%"><tbody><tr><td style="padding:0;border-collapse:collapse;border-spacing:0;margin:0;" valign="top"> <table align="center" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;"> <div class="text-block"> <span> <a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fwww.linkedin.com%2Fposts%2Falrolorojas_datastrategy-analytics-businessintelligence-share-7371121682297683968-BEah%3Futm_source=tldrdata/1/01000199383d38ca-ee16ad86-6e4a-4346-b960-4ff4048b2bc6-000000/okSEDLzWiW2Q6cuX6n1OaqgwYLAyaY6H4cIGkfE0-yc=422"> <span> <strong>The CEO asked why monthly active users didn't match across reports (2 minute read)</strong> </span> </a> <br> <br> <span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;"> Teams showed different MAU numbers because each defined "active user" differently. </span> </span> </div> </td></tr></tbody></table> <table align="center" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;"> <div class="text-block"> <span> <a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fbuttondown.com%2Fjaffray%2Farchive%2Fquery-operator-structures%2F%3Futm_source=tldrdata/1/01000199383d38ca-ee16ad86-6e4a-4346-b960-4ff4048b2bc6-000000/K5Xl4TvEWrr6nXxplvoW62jMyAu36tbPauHqYrNZAlw=422"> <span> <strong>Query Operator Structures (3 minute read)</strong> </span> </a> <br> <br> <span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;"> Query planning relies on inspecting and restructuring operator trees to optimize execution, contrasting with the iterator-based Volcano model where operators act as opaque result set sources. </span> </span> </div> </td></tr></tbody></table> </td></tr></tbody></table> <table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td align="left" style="word-break: break-word; vertical-align: top; padding: 5px 10px;"> <p style="padding: 0; margin: 0; font-size: 22px; color: #000000; line-height: 1.6; font-weight: bold;"> Want to advertise in TLDR? π° </p> <div class="text-block" style="margin-top: 10px;"> If your company is interested in reaching an audience of data engineering professionals and decision makers, you may want to <a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fadvertise.tldr.tech%2F%3Futm_source=tldrdata%26utm_medium=newsletter%26utm_campaign=advertisecta/1/01000199383d38ca-ee16ad86-6e4a-4346-b960-4ff4048b2bc6-000000/mR8Q3wgtTAr2LK8yPDsSK18MSGAHUxVdgbZZVzbBocM=422"><strong><span>advertise with us</span></strong></a>. </div> <br> <!-- New "Want to work at TLDR?" section --> <p style="padding: 0; margin: 0; font-size: 22px; color: #000000; line-height: 1.6; font-weight: bold;"> Want to work at TLDR? πΌ </p> <div class="text-block" style="margin-top: 10px;"> <a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fjobs.ashbyhq.com%2Ftldr.tech/1/01000199383d38ca-ee16ad86-6e4a-4346-b960-4ff4048b2bc6-000000/sNPz6kLaQWJ0RlTeVle87_JMO8bDh5g1worrXKIA628=422" rel="noopener noreferrer" style="color: #0000EE; text-decoration: underline;" target="_blank"><strong>Apply here</strong></a> or send a friend's resume to <a href="mailto:jobs@tldr.tech" style="color: #0000EE; text-decoration: underline;">jobs@tldr.tech</a> and get $1k if we hire them! </div> <br> <div class="text-block"> If you have any comments or feedback, just respond to this email! <br> <br> Thanks for reading, <br> <a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fwww.linkedin.com%2Fin%2Fjoelvanveluwen%2F/1/01000199383d38ca-ee16ad86-6e4a-4346-b960-4ff4048b2bc6-000000/qBYWvA6NunhNzJoTqGFzL0I_-VTaY-Rov0787YacSBA=422"><span>Joel Van Veluwen</span></a>, <a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fwww.linkedin.com%2Fin%2Fjennytzurueyching%2F/1/01000199383d38ca-ee16ad86-6e4a-4346-b960-4ff4048b2bc6-000000/9yc6_28ffJxES74MmAtqU5MrJ6HIl1BTHbzD4ugi7-k=422"><span>Tzu-Ruey Ching</span></a> & <a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fwww.linkedin.com%2Fin%2Fremi-turpaud%2F/1/01000199383d38ca-ee16ad86-6e4a-4346-b960-4ff4048b2bc6-000000/hKgfdkanwEBsGwWkrSTpHfUZPiT1V_AtkaaWLT8h-ZM=422"><span>Remi Turpaud</span></a> <br> <br> </div> <br> </td></tr></tbody></table> <table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;"> <div class="text-block" id="testing-id"> <a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Ftldr.tech%2Fdata%2Fmanage%3Femail=silk.theater.56%2540fwdnl.com/1/01000199383d38ca-ee16ad86-6e4a-4346-b960-4ff4048b2bc6-000000/Zcz7PRvkVtxQPMTJ392DKz_IJMYa8KNE2T0Y37Wk_yk=422">Manage your subscriptions</a> to our other newsletters on tech, startups, and programming. Or if TLDR Data isn't for you, please <a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fa.tldrnewsletter.com%2Funsubscribe%3Fep=1%26l=037ede50-92cc-11ee-b0f2-b761aa2217ad%26lc=1670a604-84b7-11f0-bcf5-55fc1d40139c%26p=2c6a09f4-8ec7-11f0-8803-c5df502b2a99%26pt=campaign%26pv=4%26spa=1757584853%26t=1757585160%26s=54a7b9d00ff2ebcb7ec1c34d58ba47416c9bde76635f57cd34f27b1921dbea30/1/01000199383d38ca-ee16ad86-6e4a-4346-b960-4ff4048b2bc6-000000/yIu3gBrbxlliP6_vD53VydPyX2s4Cw9VUB0q542ZTzU=422">unsubscribe</a>. <br> </div> </td></tr></tbody></table> </td></tr></tbody></table> </td></tr></tbody></table> </td></tr></tbody></table> </td></tr></tbody></table> <img alt="" src="http://tracking.tldrnewsletter.com/CI0/01000199383d38ca-ee16ad86-6e4a-4346-b960-4ff4048b2bc6-000000/E1XQNkEHpH_ylkZ9KgoAn2y5yxPCozY5DcnxOWiXXQk=422" style="display: none; width: 1px; height: 1px;"> </body></html>